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purpose of this presentation

(1) provide an opportunity for IOP aficionados to have a
frank, collaborative discussion on the state-of-the-art
in IOP determinations, our forthcoming challenges, &
where we want to be in the next two years

(2) provide the above in such a manner to effectively
convey the state-of-the-art, plus our ideas &
concerns, to the non-aficionados
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for the non-aficionados in the room

what are marine inherent optical properties (IOPs)?
spectral absorption & volume scattering coefficients

- total absorption (a) & its subcomponents (a,,, a,, a,,, @4, a,)
- volume scattering function (5(0); VSF) & total scattering (b)
- total backscattering (b,) & its subcomponents (b, by,)

- beam attenuation of particles (c,)

what can marine I0OPs tell me?
they describe the contents of the upper ocean

- phytoplankton abundance & community structure
- particle size distributions

- non-algal suspended particle abundance

- particulate & dissolved carbon abundance

- diffuse attenuation / water clarity

PJW, NASA GSFC, 15 Jan 2015, PACE ST Meeting




PACE SDT recommend measurement ranges for an OCI

baseline (“desired”): 1% & 99% positions of frequency distribution
threshold (“required”): 5% & 95% positions of frequency distribution

a 0.02 0.03 0.7 1.8 m-
aph 0.003 0.007 0.7 1.2 m-’
aq 0.0004 0.001 0.3 0.6 m-
CH 0.002 0.003 0.5 0.9 m-
by, 0.0003 0.001 0.003 0.1 m-
C 0.03 0.1 0.5 10 m-’

Values for 443 nm. Ranges estimated using multiple in situ data sets.
From PACE SDT table A-1 (also from previous ACE ST white paper).

No (obvious) satellite IOP accuracy/precision requirements (yet).
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iInstruments & algorithms — many exist

this presentation uses one generic

algorithm form to simplify talking points
early formS' Sugihara & Kishino 1988, Roesler & Perry 1995

o

— JUDCERDy BEXN‘”\\\\&

.~
e

>
& -
7 v e
. -
*J
X >

e T ol
_UCTICE 0F T/ ”‘*L T
2 BLEh T L VT e

:
E & L » _ -~ ”-m .
» s o 6 e 8 : S : e

PJW, NASA GSFC, 15 Jan 2015, PACE ST Meeting




where are we today?

most algorithm reasonably retrieve total IOPs over a large dynamic range
color key: in situ data, synthesized data
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where are we today?

dividing totals into subcomponents adds variability & uncertainty
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where are we today?

idea is that subcomponents differ optically at satellite wavelengths
but individual subcomponents vary spatially / temporally / biogeochemically / physiologically
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where are we today?

Reports of the International
Ocean-Colour Coordinating Group

An Affiliated Program of the Scientific Committee on Oceanic Research (SCOR)
An Associate Member of the Committee on Earth Observation Satellites (CEOS)

I0CCG Report Number 5, 2006

Remote Sensing of Inherent Optical Properties:
Fundamentals, Tests of Algorithms, and Applications

Editor:
ZhongPing Lee (Naval Research Laboratory, Stennis Space Center, USA)

Report of an I0CCG working group on ocean-colour algorithms, chaired by
ZhongPing Lee and based on contributions from (in alphabetical order):

Robert Arnone, Marcel Babin, Andrew H. Barnard, Emmanuel Boss,

Jennifer P. nizzaro, Kendall L. Carder, F. Robert Chen, Emmanuel Devred,
Roland Doerffer, KePing Du, Frank Hoge, Oleg V. Kopelevich,

ZhongPing Lee, Hubert Loisel, Paul E. Lyon, Stéphane Maritorena,

Trevor Platt, Antoine Poteau, Collin Roesler, Shubha Sathyendranath,
Helmut Schiller, Dave Siegel, Akihiko Tanaka, ]. Ronald V. Zaneveld

Series Editor: Venetia Stuart

first comprehensive
survey & evaluation
of algorithms

many comprehensive analyses of
algorithms & instruments exist
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where are we today?

in general, not all IOPs retrieved by contemporary approaches
passive ocean color instruments do not measure forward scattering
g
- total absorption (a) & its subcomponents (,,, a,, a,,, a4, a,)
- volume scattering function (5(0); VSF) & total scattering (b)
- total backscattering (b,) & its subcomponents (b, by,)
- beam attenuation of particles (c,)

limited by data availability, instruments, & environmental variability
one size does not fit all & we cannot yet measure everything everywhere

- comprehensive data sets limited in space & time

- synthesized data sets cannot represent all conditions

- instrument protocols to be updated / revised

- in situ instrumentation to be improved / enhanced

- biogeochemical / physiological relationships to be improved
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what IOP improvements do we expect out of PACE?

for this presentation, assume improved A/C & therefore excellent R
(and historical secondary data products)

hyperspectral — ability to observe pigments other than chlorophyll
& their absorption (backscattering?) features
- phytoplankton abundance & community composition
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what IOP improvements do we expect out of PACE?

for this presentation, assume improved A/C & therefore excellent R
(and historical secondary data products)

UV - ability to better separate CDOM (dissolved organic material)
from chlorophyll; potential to separate CDOM & non-algal particles
- carbon stocks & fates

- water clarity, offshore tracers, resuspension events
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what IOP improvements do we expect out of PACE?

for this presentation, assume improved A/C & therefore excellent R
(and historical secondary data products)

polarimetry — enable estimation of backscattering ratios, leading to
beam attenuation spectra, bulk composition of organics vs.
inorganics, & better size information; measure volume scattering?

- particle sizes & composition

- volume scattering / R,.-IOP relationships
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bird’s-eye view of challenges

algorithms:

many algorithms; all with strengths & weaknesses; best combo not identified
making assumptions regarding component spectral shapes
assigning & propagating uncertainties
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bird’s-eye view of challenges

data:

paucity of complete datasets — full suites of R, plus IOPs (plus stocks?)

existing synthesized data highly useful, but cannot represent all conditions

how to improve use of other environmental information to better constrain
biogeochemical / physiological assumptions in spectral shapes?
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bird’s-eye view of challenges

instrumentation / methods:

expanding the spectral domain (e.g., into the UV)
multi- versus hyperspectral instrumentation (e.g., backscattering)
uncertainties, revised measurement protocols, NIST-traceable standards
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outline of forthcoming discussion

remainder of presentation will provide a general review of
challenges associated with algorithms

the floor will be open for algorithm-related comments

the floor will be open for discussion challenges associated
with data, uncertainties, environmental variability,
measurement methods, & other related topics of interest
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absorbing & scattering components are additive
& can be expressed as the product of their shape & magnitude

a(A)=a,(A)+a,(A)+a,(A)

a(A)=a, (L)+ Mdgazg (A)+ M(Pa; (A)
/7 TN

eigenvalue eigenvector
(magnitude) (shape)

bb ()\.) = bbw ()\.) + bbp ()\.)
by () = by, (M) + My, by, (1)
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relating R, (the satellite) to IOPs (what we want)

b (A) + My, by (A
Ry(2) = G(2) "2 Lop 2ty ()

Dy () + My by, (W) + a,, () +M goay (M) + M pa, (A)
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relating R, (the satellite) to IOPs (what we want)

—_— by (A)+ M, by (A
Ry(%) = G(2) "2 Lop 2ty ()

by, (L) + Aﬁpbzﬁ (M)+a,,(X) +]\£ga2g()n) + ]\iﬁha*ﬂ L (A)

terms with blue bars have pre-assigned spectral shapes
associated with them (known or modeled)

find combination of M’s (red bars) such that right hand
side best reconstructs left hand side
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the R, to IOP relationship

by (A) + My, by, (A)

Rrs()") =G(A) > > *
bbw ()\,) + Mbpbbp()"’)-l_ a,, ()\.) +Mdgadg()u) + Mphaph ()L)

|
u
R. (M) =G, (M) u(h) + Go(A) u(r)’ D

several parameterizations of G exist

- are any valid in the UV?

- is spectral dependence required?

- does the quadratic offer an advantage over the linear (G, = 0)?

other analytical relationships exist that more explicitly include VSF info
- do these offer improvements?
- use direct VSF measurement (polarimetery?) or regional tuning?

ZP Lee slides to follow

PJW, NASA GSFC, 15 Jan 2015, PACE ST Meeting




seawater values

‘R;S(AJ =:(;(AJ

Dy (WY M1y (W)€, (W)Y M g (M) + M a5 (1)

lwa

- include temperature & salinity dependence
- revise depolarization ratio

- desire improved ancillary sources

a'W

- include temperature & salinity dependence
- revisit values / methods of determination
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the inversion method

R (M) =G by (A) + My, by (A)
i bbW_(M + A_@DM"‘ a,, (1) +1\£ga2g()») + ]\&ha*h (L)

find combination of M’s such that right side best reconstructs left side

many approaches exist, all with strengths & weaknesses

- best-fit, spectral matching to simultaneously solve for M

- piecewise spectral decomposition that sequentially solves for M
- bulk, band-by-band decomposition

- static and/or dynamic LUTs

- others ...

many ways to decompose totals in non-remote sensing literature

- use most computationally efficient method to solve for totals (a, b,)
- decompose totals into subcomponents in second step
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the R, to IOP relationship

Rrs ()") = G()")

typical expressions for spectral shapes
- Dpp(h) = AT
- @'yg() = exp(-S M)

- a’,,(0) = tabulated or some function of Ch/ / phytoplankton
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generations of semi-analytical algorithms for retrieving IOPs

assigning eigenvectors (spectral shapes) — one size DOES NOT fit all

First Generation: Constant spectral
shapes (eigenvectors) assigned to all

unknown parameters (eigenvalues).

Roesler and Perry 1995; Hoge and Lyon
1996; Maritorena et al. 2002 (GSM)

Third generation: Ranges of spectral
shapes for unknown parameters applied
iteratively. Final unknown parameters
calculated as median of all valid values
retrieved during iteration.

Wang et al. 2005; Brando et al. 2012

Second generation: Spectral shapes for
unknown parameters calculated

relationships dependent on ratios of Rrs.

Lee et al. 2002 (QAA); Smyth et al. 2006

dynamically, often using empirical

(PML); Werdell et al. 2013 (GIOP-DC)
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Towards the next generation: Merge

second and third generations, plus
consider other ensemble approaches,
such as OWTs (Moore et al. 2009), and
expand framework to support optically
shallow water (Lee et al. 2001).




the R, to IOP relationship

Rrs ()") = G()")

typical expressions for spectral shapes
- Dpp(h) = AT
- @'yg() = exp(-S M)

- a’,,(0) = tabulated or some function of Ch/ / phytoplankton
0.03 T ‘ 1 r r — Diatoml 1
\ Dinoflagellate
5 - Mesodinium
'*§_ - Dinophysis
2 —— Gymnodinium |
- Chlorophyte
§
i
oL e from Roesler
Wavelenath (nm) et al 2004
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the R, to IOP relationship

Rrs ()\') = G()")

typical expressions for spectral shapes

- b)) =AM

- a'y(A) = exp(-S \)

- a’,,(0) = tabulated or some function of Ch/ / phytoplankton

issues with the parameterization of spectral shapes

are these expressions valid / the best to use?

- how best to dynamically assign shape parameters pixel-by-pixel?
- expansion into additional subcomponents

- reducing / constraining / avoiding assumptions

- additional free parameters (n, S)?
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input uncertainties, cost functions, & output uncertainties

iInput uncertainties

- need uncertainties on input R (match-ups, SNRs, Monte Carlo stats)
- can these uncertainties vary in time & space?

- include uncertainties associated with spectral shapes / in situ data?

cost functions (best-fit spectral matching methods only)
- most (e.g., Levenberg Marquardt) use a x? form
- use of absolute & relative differences?

output uncertainties

- desire pixel-by-pixel uncertainties on output IOP products

- common units of measure of uncertainty?

- a number of methods for calculating / propagating error proposed
- report ranges of feasible solutions?

- what wavelengths?

- quality levels in standard satellite data files?
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other topics & challenges

inelastic scattering (Raman, Chl / CDOM fluorescence)
- methods to incorporate Raman exist

quality control metrics
- how to define a valid retrieval?
- data ranges / goodness of fit currently used

evaluating improvements

- data values (regression stats, unbiased % differences, RMSD)

- vary by water type or trophic level?

- satellite spatial & temporal coverage

- computational performance

- many products done ok versus single product done exceptionally

iIncorporating other data products
- polarimetry
- ancillary data (mixed layer depth, temperature, salinity, etc.)

normalizations, bidirectional reflectance functions (BRDF, VSF)
optically shallow water
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available tools

satellite (I2gen/SeaDAS) & IDL/Matlab/Python software for
evaluating IOP parameterizations / modules (GIOP framework)

data sets (IOP subgroup, synergy with A/C group, proposed
work by Mitchell & Lee & data from other proposals)

what else?
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tangible GSFC contributions to the ST

implementation / evaluation of Raman corrections, ensemble
methods, shallow water extensions; other sensitivity analyses
related to alternative spectral shape parameterizations

synthetic dataset(s)
updated version of NOMAD, hyperspectral version of NOMAD

implementation of algorithms & their modules in support of all
science team members; provide a controlled environment for
iInter-comparisons & evaluations
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discussion

comments regarding algorithms

comments regarding:

- data sets

- instrument needs / requirements

- uncertainties

- measurement methods / protocols

- use of additional environmental information
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ZP Lee slides
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Exact solution;, L,(07,L")
7y (4, €2') = £, 07y (Zaneveld 1995)

D, (2,64 TR A(R,Q) L(A,Q") sin(6")d6' dg

(A, Q) = _
c(A)+ k() = [,(2. Q)b (2) E,q(07.2.65)

Gordon et al (1988)

2 b, (1)
r (A.0)= o, b
s (4,0) Elgl(a(ﬂ)+bb(ﬂ))

Albert and Mobley (2003) :

I

b(A) \
2,Q') = g(Q ’
() = g w)lgpl(aw : M))
Lee et al (2004) b, (A) by,(A)
N ' bw ! bp
HE ) Gy Gy )
2, (49 =g l—glExp(—gz a(/l;’i bb(ﬂ)))

Lee et al (2011)

"N _ 2 e} bbw()l’) i : P ' bbp(l)
s (4 2) = 3 817 (2 )(a(/l)+bb(/1)) tg e )(“(’l“bb(’w
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satellite |IOP match-ups
SeaWiFS & MODISA
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GIOP framework for PACE algorithm / module testing

2gen

| Main Products Processing Options = Subsetting Options = Thresholds = Ancillary Inputs

10P Options
giop_adg_file SOCDATAROOT/common/adg_default.txt

.

giop_adg_opt 1 - exponential with exponent supplied via giop_adg_s) s

giop_adg_s 0.018
giop_aph_file SOCDATAROOT/common/aph_default.txt

a

giop_aph_opt 2 - Bricaud et al. 1995 (chlorophyll supplied via default empirical algor ... *

giop_aph_s -1000.0
giop_bbp_file SOCDATAROOT/common/bbp_default.txt
giop_bbp_opt 3 - power-law with exponent derived via Lee et al. (2002) s
giop_bbp_s -1000.0
giop_fit_opt 1 - Levenberg-Marquardt optimization %
giop_grd [0.0949,0.0794]
giop_maxiter 50

giop_rrs_opt 0 - Gordon quadratic (specified with giop_grd) + |

giop_rrs_diff 0.33
giop_wave [412,443,488,547,667]
gsm_adg_s 0.02061
gsm_aphs [0.00665, 0.05582, 0.02055, 0.01910, 0.01015, 0.01424]
gsm_aphw  [412.0, 443.0, 490.0, 510.0, 555.0, 670.0]
gsm_bbp_s 1.03373

gsm_fit 0 - Amoeba :
gsm_opt 0 - default coefficients =
iop_opt 0 - None (products requiring a or bb will fail) 3

gaa_adg_s 0.015
gaa_wave [412,443,488,547 ¢

seawater_opt 0 - static values A

Restore Defaults (IOP Options only)

Keep params when new ifile is selected

generalized IOP (GIOP) framework available through SeaDAS
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optically shallow water

optically shallow water
where sunlight reflected
off the seafloor is seen
by the satellite

SWIM and GIOP are
similar algorithms, with
the exception that SWIM
has been extended to
account for shallow
water reflectances

Great Barrier Reef
McKinna et al. (2015)
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configuring an IOP inversion algorithm

power-law, n:

fixed
SAAs developed routinely over 30 yrs Lee et al. (2002)
many successfully retrieve three components Ciotti et al. (1999)
many overlapping approaches exist Hoge & Lyon (1996)

GIOP defaults in red Loisel & Stramski (2001)

Morel (2001)
/ o
by, +M, by

R =G - -
\a, +M,a, +M,a,

rs

Levenberg-Marquardt
SVD matrix inversion

exponential, S: tabulated a’,,,(A)
fixed (= 0.018) Bricaud et al. (1998)
Morel f/Q | Lee et al. (2002) Ciotti & Bricaud (2006)
Gordon quadratic Werdell (2010)

tabulated a’ (1)
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